Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## Bis[4-(2-benzylidenepropylideneamino)phenyl] ether

### Mansoor Movahedi,<sup>a</sup> Hassan Hadadzadeh,<sup>b</sup> Karla Fejfarova,<sup>c</sup> Michal Dusek<sup>c</sup>\* and Aliakbar Dehno Khalaji<sup>d</sup>

<sup>a</sup>Department of Science, Golestan University, Gorgan, Iran, <sup>b</sup>Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran, <sup>c</sup>Institute of Physics of the ASCR, Na Slovance 2, 182 21 Prague 8, Czech Republic, and <sup>d</sup>Department of Science, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran Correspondence e-mail: dusek@fzu.cz

Received 10 February 2009; accepted 11 February 2009

Key indicators: single-crystal X-ray study; T = 295 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.036; wR factor = 0.120; data-to-parameter ratio = 12.1.

The title compound, C<sub>32</sub>H<sub>28</sub>N<sub>2</sub>O, is a flexible Schiff base displaying a *trans* configuration across the C=N double bond. It was prepared in high yield by condensation of  $\alpha$ -methylcinnamaldehyde and bis(4-aminophenyl) ether in methanol at room temperature. The sample, with pseudo-orthorhombic cell parameters, exhibited merohedral twinning by rotation  $180^{\circ}$  around  $a^*$ , with a refined twin domain fraction of 0.722 (1). The elongated shape of the elementary cell corresponds to the shape and direction of the molecules. The dihedral angle between the O-linked aromatic rings is 57.86 (8)°.

#### **Related literature**

For the synthesis of the title compound, see: Khalaji & Ng (2008). For related structures, see: Hu et al. (2008); Xu et al. (2008). For background to transition metal complexes, see: Laye (2007); Huang et al. (2005); Chu & Huang (2007).



#### **Experimental**

#### Crystal data

C32H28N2O V = 2519.5 (2) Å<sup>3</sup>  $M_r = 456.6$ Z = 4Monoclinic,  $P2_1/n$ a = 7.4737 (3) Å b = 55.929 (3) Å T = 295 Kc = 6.0275 (3) Å  $\beta = 90.022 (4)^{\circ}$ 

#### Data collection

```
Oxford Diffraction Gemini
  diffractometer with Atlas CCD
  detector
Absorption correction: multi-scan
  (CrvsAlis RED: Oxford
  Diffraction, 2008)
  T_{\min} = 0.682, T_{\max} = 0.99
```

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$  $wR(F^2) = 0.120$ S = 2.323838 reflections

Cu Ka radiation  $\mu = 0.56 \text{ mm}^{-1}$  $0.51 \times 0.38 \times 0.02 \text{ mm}$ 

15440 measured reflections 3838 independent reflections 3428 reflections with  $I > 3\sigma(I)$  $R_{\rm int} = 0.016$  $\theta_{\rm max} = 61.4^{\circ}$ 

317 parameters H-atom parameters constrained  $\Delta \rho_{\rm max} = 0.19 \text{ e} \text{ Å}^ \Delta \rho_{\rm min}$  = -0.18 e Å<sup>-3</sup>

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: JANA2006 (Petříček et al., 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006.

We thank Gorgan University of Agricultural Sciences and Natural Resources (GUASNR) and the Grant Agency of the Czech Republic (grant No. 202/07/J007) for supporting this study. ADK thanks Dr Jan Fabry (Institute of Physics of ASCR) for his collaboration.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2870).

#### References

- Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Chu, Z. & Huang, W. (2007). J. Mol. Struct. 837, 15-22
- Hu, S.-L., Li, Y.-T. & Cao, L.-P. (2008). Acta Cryst. E64, o115.

Huang, Z., Tian, J.-L. & Bu, X. H. (2005). Inorg. Chem. Commun. 8, 194-198. Khalaji, A. D. & Ng, S. W. (2008). Acta Cryst. E64, 01771.

Laye, R. H. (2007). Inorg. Chim. Acta, 360, 439-447.

Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.

- Petříček, V., Dušek, M. & Palatinus, L. (2008). JANA2006. Institute of Physics, Praha, Czech Republic.
- Xu, H.-W., Li, J.-X. & Li, Y.-H. (2008). Acta Cryst. E64, o1145.

Acta Cryst. (2009). E65, o538 [doi:10.1107/S1600536809005005]

### Bis[4-(2-benzylidenepropylideneamino)phenyl] ether

### M. Movahedi, H. Hadadzadeh, K. Fejfarova, M. Dusek and A. Dehno Khalaji

#### Comment

Flexible Schiff-base ligands have received a lot of attention in the field of supramolecular coordination chemistry (Laye, 2007; Huang *et al.*, 2005; Chu & Huang, 2007). Because of easy syntheses of these compounds by condensation between aldehydes (or ketones) and amines, many of them were designed and sued to prepare transition metal complexes in recent years. Here, we report the synthesis and crystal structure of a new flexible Schiff-base compound (I). The molecule of (I) is shown in Fig. 1. Bond lengths and angles are comparable with those observed in similar compounds (Hu *et al.*, 2008; Xu *et al.*, 2008). The C(7)=N(1) and C(23)=N(2) bond lengths of 1.266 (3) and 1.270 (3) Å, respectively, conform to the usual value for a C=N double bond. Each half of the molecule displays a *trans* configuration across the C=N double bond. The prolongated shape of the molecule is reflected by very long *b* axis about 55 Å. The molecules are isolated (Fig. 2), with no intermolecular contacts. From crystallographic point of view merohedric twinning by rotation 180° around a\* and pseudo-orthorhombic cell parameters should be noted. The twinning has occurred regularly in all tested samples.

### Experimental

The title compound was synthesized using a method analogous to the literature procedure of Khalaji and Ng (2008). Crystals appropriate for data collection were obtained by slow evaporation from a methanol-chloroform mixture (1:5 v/v) at room temperature (yield; 88%).

#### Refinement

All H atoms were found in difference Fourier maps, but they were constrained to ideal positions. The isotropic atomic displacement parameters of hydrogen atoms were set to  $1.2U_{eq}$  of the parent atom. The sample had a pseudo-orthorhombic cell parameters and exhibited a merohedric twinning by rotation 180° around a\* (with twinning matrix 1 0 0 / 0 - 1 0 / 0 0 - 1 applied to indices expressed like row vectors). The volume fraction of the second domain was refined to 0.278 (1).



Fig. 1. The molecule of (I) viewed along a with atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.



Fig. 2. The packing of (I) viewed along c.

## Bis[4-(2-benzylidenepropylideneamino)phenyl] ether

| Crystal data                   |                                                 |
|--------------------------------|-------------------------------------------------|
| $C_{32}H_{28}N_2O_1$           | $F_{000} = 968$                                 |
| $M_r = 456.6$                  | $D_{\rm x} = 1.203 {\rm ~Mg~m}^{-3}$            |
| Monoclinic, $P2_1/n$           | Cu $K\alpha$ radiation<br>$\lambda = 1.54184$ Å |
| Hall symbol: -P 2yn            | Cell parameters from 9034 reflections           |
| <i>a</i> = 7.4737 (3) Å        | $\theta = 3.2 - 61.2^{\circ}$                   |
| <i>b</i> = 55.929 (3) Å        | $\mu = 0.56 \text{ mm}^{-1}$                    |
| c = 6.0275 (3) Å               | <i>T</i> = 295 K                                |
| $\beta = 90.022 \ (4)^{\circ}$ | Plate, yellow                                   |
| $V = 2519.5 (2) \text{ Å}^3$   | $0.51\times0.38\times0.02~mm$                   |
| Z = 4                          |                                                 |
|                                |                                                 |
|                                |                                                 |

# Data collection

Oxford Diffraction Gemini

3838 independent reflections

| diffractometer with Atlas CCD detector                                        |                                        |
|-------------------------------------------------------------------------------|----------------------------------------|
| Radiation source: X-ray tube                                                  | 3428 reflections with $I > 3\sigma(I)$ |
| Monochromator: mirrors                                                        | $R_{\rm int} = 0.016$                  |
| Detector resolution: 20.7567 pixels mm <sup>-1</sup>                          | $\theta_{\text{max}} = 61.4^{\circ}$   |
| T = 295  K                                                                    | $\theta_{\min} = 3.2^{\circ}$          |
| Rotation method data acquisition using $\omega$ scans                         | $h = -8 \rightarrow 8$                 |
| Absorption correction: multi-scan<br>(CrysAlis RED; Oxford Diffraction, 2008) | $k = -62 \rightarrow 62$               |
| $T_{\min} = 0.682, \ T_{\max} = 0.99$                                         | $l = -6 \rightarrow 6$                 |
| 15440 measured reflections                                                    |                                        |

#### Refinement

| Refinement on $F^2$             | Secondary atom site location: difference Fourier map                        |
|---------------------------------|-----------------------------------------------------------------------------|
| Least-squares matrix: full      | Hydrogen site location: difference Fourier map                              |
| $R[F^2 > 2\sigma(F^2)] = 0.036$ | H-atom parameters constrained                                               |
| $wR(F^2) = 0.120$               | Weighting scheme based on measured s.u.'s $w = 1/[\sigma^2(I) + 0.0016I^2]$ |
| <i>S</i> = 2.32                 | $(\Delta/\sigma)_{\rm max} = 0.001$                                         |
| 3838 reflections                | $\Delta \rho_{max} = 0.19 \text{ e } \text{\AA}^{-3}$                       |
| 317 parameters                  | $\Delta \rho_{min} = -0.18 \text{ e } \text{\AA}^{-3}$                      |
| 112 constraints                 | Extinction correction: none                                                 |
|                                 |                                                                             |

Primary atom site location: structure-invariant direct methods

#### Special details

**Refinement**. The refinement was carried out against all reflections. The conventional *R*-factor is always based on *F*. The goodness of fit as well as the weighted *R*-factor are based on *F* and  $F^2$  for refinement carried out on *F* and  $F^2$ , respectively. The threshold expression is used only for calculating *R*-factors *etc.* and it is not relevant to the choice of reflections for refinement.

The program used for refinement, Jana2006, uses the weighting scheme based on the experimental expectations, see \_refine\_ls\_weighting\_details, that does not force *S* to be one. Therefore the values of *S* are usually larger than the ones from the *SHELX* program.

|    | x            | У           | Ζ          | $U_{\rm iso}$ */ $U_{\rm eq}$ |
|----|--------------|-------------|------------|-------------------------------|
| 01 | 0.41159 (19) | 0.25020 (2) | 1.1527 (2) | 0.0638 (4)                    |
| N1 | 0.4123 (2)   | 0.33936 (3) | 0.7401 (3) | 0.0617 (5)                    |
| N2 | 0.4264 (2)   | 0.16126 (3) | 0.7377 (3) | 0.0623 (5)                    |
| C1 | 0.4131 (2)   | 0.27183 (3) | 1.0403 (3) | 0.0548 (5)                    |
| C2 | 0.4984 (2)   | 0.29047 (3) | 1.1464 (3) | 0.0613 (6)                    |
| C3 | 0.4970 (2)   | 0.31299 (3) | 1.0534 (3) | 0.0635 (6)                    |
| C4 | 0.4118 (2)   | 0.31709 (3) | 0.8503 (3) | 0.0568 (5)                    |
| C5 | 0.3295 (2)   | 0.29795 (3) | 0.7467 (3) | 0.0601 (6)                    |
| C6 | 0.3268 (2)   | 0.27553 (3) | 0.8402 (3) | 0.0616 (6)                    |
| C7 | 0.4096 (2)   | 0.35875 (3) | 0.8483 (3) | 0.0636 (6)                    |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

| C8   | 0.4215 (2) | 0.38208 (3) | 0.7420 (3) | 0.0600 (6) |
|------|------------|-------------|------------|------------|
| С9   | 0.4227 (2) | 0.40156 (3) | 0.8727 (3) | 0.0639 (6) |
| C10  | 0.4388 (2) | 0.42689 (3) | 0.8176 (3) | 0.0602 (6) |
| C11  | 0.5287 (3) | 0.43555 (4) | 0.6318 (4) | 0.0723 (7) |
| C12  | 0.5396 (3) | 0.45964 (4) | 0.5896 (4) | 0.0859 (9) |
| C13  | 0.4641 (3) | 0.47591 (4) | 0.7318 (4) | 0.0875 (9) |
| C14  | 0.3778 (3) | 0.46796 (4) | 0.9185 (4) | 0.0842 (8) |
| C15  | 0.3661 (3) | 0.44386 (4) | 0.9620 (4) | 0.0712 (7) |
| C16  | 0.4273 (3) | 0.38214 (4) | 0.4939 (3) | 0.0780 (8) |
| C17  | 0.4135 (2) | 0.22865 (3) | 1.0395 (3) | 0.0555 (5) |
| C18  | 0.3308 (2) | 0.20971 (3) | 1.1439 (3) | 0.0613 (6) |
| C19  | 0.3356 (2) | 0.18727 (3) | 1.0517 (3) | 0.0628 (6) |
| C20  | 0.4223 (2) | 0.18353 (3) | 0.8484 (3) | 0.0574 (5) |
| C21  | 0.5012 (2) | 0.20285 (3) | 0.7441 (3) | 0.0606 (6) |
| C22  | 0.5005 (2) | 0.22525 (3) | 0.8389 (3) | 0.0612 (6) |
| C23  | 0.4375 (2) | 0.14192 (4) | 0.8456 (3) | 0.0648 (6) |
| C24  | 0.4369 (2) | 0.11855 (3) | 0.7384 (3) | 0.0609 (6) |
| C25  | 0.4481 (2) | 0.09907 (3) | 0.8688 (3) | 0.0644 (6) |
| C26  | 0.4490 (2) | 0.07366 (3) | 0.8136 (3) | 0.0612 (6) |
| C27  | 0.3678 (3) | 0.06393 (4) | 0.6255 (4) | 0.0716 (7) |
| C28  | 0.3726 (3) | 0.03972 (4) | 0.5842 (4) | 0.0843 (8) |
| C29  | 0.4589 (3) | 0.02459 (4) | 0.7274 (4) | 0.0854 (8) |
| C30  | 0.5381 (3) | 0.03360 (4) | 0.9145 (4) | 0.0862 (9) |
| C31  | 0.5324 (3) | 0.05778 (4) | 0.9586 (4) | 0.0741 (7) |
| C32  | 0.4306 (3) | 0.11845 (4) | 0.4907 (3) | 0.0773 (8) |
| H2   | 0.558692   | 0.287765    | 1.284787   | 0.0735*    |
| H3   | 0.555012   | 0.325979    | 1.128755   | 0.0762*    |
| Н5   | 0.272697   | 0.300391    | 0.605623   | 0.0721*    |
| H6   | 0.265779   | 0.262608    | 0.76752    | 0.0739*    |
| H11  | 0.584073   | 0.424477    | 0.531363   | 0.0868*    |
| H12  | 0.600738   | 0.46515     | 0.459163   | 0.1031*    |
| H13  | 0.471712   | 0.492723    | 0.700898   | 0.105*     |
| H14  | 0.325198   | 0.479257    | 1.01914    | 0.1011*    |
| H15  | 0.306821   | 0.438587    | 1.094548   | 0.0855*    |
| H18  | 0.26953    | 0.212226    | 1.281899   | 0.0736*    |
| H19  | 0.279415   | 0.174115    | 1.126614   | 0.0753*    |
| H21  | 0.557768   | 0.200601    | 0.602612   | 0.0728*    |
| H22  | 0.559553   | 0.238363    | 0.76685    | 0.0734*    |
| H27  | 0.307393   | 0.074305    | 0.523036   | 0.0859*    |
| H28  | 0.315201   | 0.033414    | 0.454239   | 0.1011*    |
| H29  | 0.463802   | 0.00776     | 0.696717   | 0.1024*    |
| H30  | 0.597998   | 0.023017    | 1.01551    | 0.1035*    |
| H31  | 0.586783   | 0.063783    | 1.091686   | 0.0889*    |
| H7   | 0.399203   | 0.358045    | 1.006914   | 0.0763*    |
| Н9   | 0.410947   | 0.398259    | 1.028338   | 0.0767*    |
| H23  | 0.446597   | 0.142663    | 1.004279   | 0.0778*    |
| H25  | 0.457048   | 0.102463    | 1.024492   | 0.0773*    |
| H16a | 0.359347   | 0.36888     | 0.438036   | 0.0936*    |
| H16b | 0.37714    | 0.396808    | 0.439336   | 0.0936*    |
|      |            |             |            | -          |

| H16c | 0.549168 | 0.380782 | 0.445248 | 0.0936* |
|------|----------|----------|----------|---------|
| H32a | 0.493257 | 0.132162 | 0.434681 | 0.0927* |
| H32b | 0.486302 | 0.104148 | 0.435939 | 0.0927* |
| H32c | 0.308313 | 0.118963 | 0.442292 | 0.0927* |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| 01  | 0.0715 (8)  | 0.0641 (7)  | 0.0559 (7)  | -0.0001 (5)  | 0.0032 (7)   | 0.0004 (6)   |
| N1  | 0.0581 (8)  | 0.0672 (9)  | 0.0598 (9)  | -0.0006 (6)  | 0.0011 (7)   | 0.0000 (7)   |
| N2  | 0.0611 (8)  | 0.0675 (9)  | 0.0585 (9)  | -0.0007 (7)  | 0.0045 (7)   | 0.0004 (7)   |
| C1  | 0.0445 (8)  | 0.0641 (10) | 0.0559 (9)  | 0.0018 (7)   | 0.0061 (7)   | -0.0017 (8)  |
| C2  | 0.0571 (9)  | 0.0713 (11) | 0.0554 (9)  | 0.0006 (8)   | -0.0064 (8)  | -0.0025 (9)  |
| C3  | 0.0600 (10) | 0.0670 (11) | 0.0634 (11) | -0.0034 (8)  | -0.0054 (8)  | -0.0080 (9)  |
| C4  | 0.0503 (8)  | 0.0659 (10) | 0.0543 (9)  | 0.0003 (7)   | 0.0039 (8)   | -0.0023 (8)  |
| C5  | 0.0541 (9)  | 0.0719 (11) | 0.0543 (9)  | 0.0012 (7)   | -0.0042 (8)  | -0.0032 (8)  |
| C6  | 0.0505 (8)  | 0.0688 (11) | 0.0655 (11) | -0.0027 (7)  | -0.0066 (8)  | -0.0065 (9)  |
| C7  | 0.0698 (11) | 0.0701 (11) | 0.0508 (9)  | 0.0010 (8)   | 0.0035 (9)   | 0.0014 (9)   |
| C8  | 0.0553 (9)  | 0.0703 (11) | 0.0543 (10) | 0.0018 (8)   | 0.0024 (8)   | 0.0043 (8)   |
| C9  | 0.0703 (11) | 0.0720 (11) | 0.0495 (9)  | 0.0028 (8)   | 0.0028 (8)   | 0.0042 (9)   |
| C10 | 0.0555 (9)  | 0.0704 (11) | 0.0547 (10) | 0.0015 (8)   | -0.0040 (8)  | 0.0020 (8)   |
| C11 | 0.0742 (11) | 0.0766 (13) | 0.0662 (11) | 0.0011 (9)   | 0.0119 (10)  | 0.0048 (10)  |
| C12 | 0.0964 (15) | 0.0807 (14) | 0.0807 (15) | -0.0061 (11) | 0.0132 (12)  | 0.0151 (11)  |
| C13 | 0.0925 (15) | 0.0701 (13) | 0.1000 (17) | -0.0013 (11) | -0.0004 (14) | 0.0106 (12)  |
| C14 | 0.0870 (14) | 0.0745 (13) | 0.0912 (16) | 0.0068 (10)  | 0.0064 (13)  | -0.0108 (12) |
| C15 | 0.0702 (12) | 0.0789 (13) | 0.0645 (11) | -0.0009 (9)  | 0.0054 (9)   | -0.0040 (9)  |
| C16 | 0.0973 (16) | 0.0812 (13) | 0.0555 (11) | -0.0032 (11) | 0.0008 (11)  | 0.0019 (9)   |
| C17 | 0.0456 (8)  | 0.0639 (10) | 0.0572 (9)  | 0.0009 (7)   | -0.0010 (7)  | 0.0014 (8)   |
| C18 | 0.0559 (9)  | 0.0714 (11) | 0.0568 (10) | 0.0012 (8)   | 0.0096 (8)   | 0.0040 (9)   |
| C19 | 0.0580 (9)  | 0.0670 (11) | 0.0634 (11) | -0.0028 (8)  | 0.0117 (8)   | 0.0062 (9)   |
| C20 | 0.0493 (8)  | 0.0668 (10) | 0.0562 (9)  | 0.0013 (7)   | 0.0027 (8)   | 0.0026 (8)   |
| C21 | 0.0560 (9)  | 0.0718 (11) | 0.0541 (9)  | 0.0001 (7)   | 0.0104 (8)   | 0.0029 (8)   |
| C22 | 0.0539 (9)  | 0.0674 (11) | 0.0623 (10) | -0.0032 (7)  | 0.0109 (8)   | 0.0061 (8)   |
| C23 | 0.0715 (11) | 0.0708 (11) | 0.0522 (9)  | 0.0025 (8)   | 0.0015 (9)   | -0.0015 (9)  |
| C24 | 0.0593 (10) | 0.0709 (11) | 0.0524 (10) | 0.0004 (8)   | 0.0033 (8)   | -0.0021 (8)  |
| C25 | 0.0706 (11) | 0.0733 (11) | 0.0493 (9)  | -0.0008 (8)  | 0.0002 (8)   | -0.0044 (9)  |
| C26 | 0.0570 (9)  | 0.0723 (11) | 0.0543 (10) | -0.0016 (8)  | 0.0022 (8)   | -0.0002 (8)  |
| C27 | 0.0707 (11) | 0.0774 (12) | 0.0667 (12) | -0.0016 (9)  | -0.0099 (10) | -0.0022 (10) |
| C28 | 0.0925 (15) | 0.0827 (14) | 0.0776 (14) | -0.0149 (11) | -0.0013 (12) | -0.0131 (12) |
| C29 | 0.0934 (15) | 0.0725 (13) | 0.0901 (16) | -0.0043 (11) | 0.0137 (13)  | -0.0041 (12) |
| C30 | 0.0947 (15) | 0.0747 (13) | 0.0892 (16) | 0.0011 (11)  | -0.0021 (13) | 0.0167 (12)  |
| C31 | 0.0793 (13) | 0.0799 (14) | 0.0630 (11) | -0.0062 (10) | -0.0057 (10) | 0.0078 (10)  |
| C32 | 0.0954 (15) | 0.0798 (13) | 0.0567 (11) | -0.0036 (11) | 0.0032 (11)  | -0.0016 (9)  |

Geometric parameters (Å, °)

| 01—C1  | 1.386 (2) | C16—H16a | 0.96 |
|--------|-----------|----------|------|
| O1—C17 | 1.385 (2) | C16—H16b | 0.96 |
| N1—C4  | 1.412 (2) | C16—H16c | 0.96 |

| N1—C7      | 1.266 (2)   | C17—C18       | 1.378 (2)   |
|------------|-------------|---------------|-------------|
| N2—C20     | 1.414 (2)   | C17—C22       | 1.386 (3)   |
| N2—C23     | 1.264 (2)   | C18—C19       | 1.373 (3)   |
| C1—C2      | 1.379 (2)   | C18—H18       | 0.96        |
| C1—C6      | 1.384 (3)   | C19—C20       | 1.402 (3)   |
| C2—C3      | 1.379 (3)   | С19—Н19       | 0.96        |
| C2—H2      | 0.96        | C20—C21       | 1.383 (3)   |
| C3—C4      | 1.398 (3)   | C21—C22       | 1.377 (3)   |
| С3—Н3      | 0.96        | C21—H21       | 0.96        |
| C4—C5      | 1.384 (2)   | С22—Н22       | 0.96        |
| C5—C6      | 1.375 (3)   | C23—C24       | 1.458 (3)   |
| С5—Н5      | 0.96        | С23—Н23       | 0.96        |
| С6—Н6      | 0.96        | C24—C25       | 1.346 (3)   |
| С7—С8      | 1.456 (3)   | C24—C32       | 1.494 (3)   |
| С7—Н7      | 0.96        | C25—C26       | 1.459 (3)   |
| C8—C9      | 1.345 (3)   | С25—Н25       | 0.96        |
| C8—C16     | 1.496 (3)   | C26—C27       | 1.396 (3)   |
| C9—C10     | 1.460 (3)   | C26—C31       | 1.393 (3)   |
| С9—Н9      | 0.96        | C27—C28       | 1.377 (3)   |
| C10—C11    | 1.393 (3)   | С27—Н27       | 0.96        |
| C10-C15    | 1.398 (3)   | C28—C29       | 1.370 (3)   |
| C11—C12    | 1.374 (3)   | C28—H28       | 0.96        |
| C11—H11    | 0.96        | C29—C30       | 1.370 (4)   |
| C12—C13    | 1.372 (3)   | С29—Н29       | 0.96        |
| C12—H12    | 0.96        | C30—C31       | 1.379 (3)   |
| C13—C14    | 1.372 (4)   | С30—Н30       | 0.96        |
| С13—Н13    | 0.96        | С31—Н31       | 0.96        |
| C14—C15    | 1.376 (3)   | C32—H32a      | 0.96        |
| C14—H14    | 0.96        | C32—H32b      | 0.96        |
| C15—H15    | 0.96        | C32—H32c      | 0.96        |
| C1—O1—C17  | 121.25 (14) | H16b—C16—H16c | 109.4707    |
| C4—N1—C7   | 120.89 (16) | O1—C17—C18    | 116.07 (16) |
| C20—N2—C23 | 120.83 (16) | O1—C17—C22    | 123.64 (15) |
| O1—C1—C2   | 115.92 (15) | C18—C17—C22   | 120.20 (16) |
| O1—C1—C6   | 123.52 (15) | C17—C18—C19   | 120.40 (17) |
| C2—C1—C6   | 120.45 (16) | C17—C18—H18   | 119.7986    |
| C1—C2—C3   | 119.92 (17) | C19—C18—H18   | 119.8003    |
| C1—C2—H2   | 120.0388    | C18—C19—C20   | 120.14 (16) |
| C3—C2—H2   | 120.0374    | C18—C19—H19   | 119.9296    |
| C2—C3—C4   | 120.58 (17) | С20—С19—Н19   | 119.9325    |
| С2—С3—Н3   | 119.7093    | N2—C20—C19    | 123.66 (15) |
| С4—С3—Н3   | 119.7097    | N2-C20-C21    | 117.67 (16) |
| N1—C4—C3   | 123.73 (15) | C19—C20—C21   | 118.60 (16) |
| N1—C4—C5   | 118.11 (16) | C20—C21—C22   | 121.35 (17) |
| C3—C4—C5   | 118.09 (16) | C20—C21—H21   | 119.326     |
| C4—C5—C6   | 121.81 (17) | C22—C21—H21   | 119.3271    |
| С4—С5—Н5   | 119.0935    | C17—C22—C21   | 119.28 (16) |
| С6—С5—Н5   | 119.0919    | С17—С22—Н22   | 120.3631    |
| C1—C6—C5   | 119.12 (16) | C20—C22—H22   | 149.7198    |

| С1—С6—Н6      | 120.4391    | N2—C23—C24    | 122.61 (18) |
|---------------|-------------|---------------|-------------|
| С5—С6—Н6      | 120.4404    | N2—C23—H23    | 118.6934    |
| N1—C7—C8      | 122.68 (17) | С24—С23—Н23   | 118.6931    |
| N1—C7—H7      | 118.6563    | C23—C24—C25   | 117.85 (17) |
| С8—С7—Н7      | 118.6616    | C23—C24—C32   | 116.50 (16) |
| С7—С8—С9      | 117.94 (17) | C25—C24—C32   | 125.61 (17) |
| C7—C8—C16     | 116.35 (16) | C24—C25—C26   | 130.95 (17) |
| C9—C8—C16     | 125.70 (17) | C24—C25—H25   | 114.5252    |
| C8—C9—C10     | 130.80 (17) | С26—С25—Н25   | 114.5237    |
| С8—С9—Н9      | 114.598     | C25—C26—C27   | 124.25 (17) |
| С10—С9—Н9     | 114.6038    | C25—C26—C31   | 118.67 (17) |
| C9—C10—C11    | 124.07 (17) | C27—C26—C31   | 117.06 (18) |
| C9—C10—C15    | 119.02 (17) | C26—C27—C28   | 121.3 (2)   |
| C11—C10—C15   | 116.87 (18) | С26—С27—Н27   | 119.375     |
| C10-C11-C12   | 121.3 (2)   | С28—С27—Н27   | 119.3729    |
| C10-C11-H11   | 119.3764    | C27—C28—C29   | 120.4 (2)   |
| C12—C11—H11   | 119.3736    | C27—C28—H28   | 119.8062    |
| C11—C12—C13   | 120.7 (2)   | С29—С28—Н28   | 119.8072    |
| C11—C12—H12   | 119.6501    | C28—C29—C30   | 119.7 (2)   |
| C13—C12—H12   | 119.6503    | С28—С29—Н29   | 120.1738    |
| C12-C13-C14   | 119.4 (2)   | С30—С29—Н29   | 120.1722    |
| С12—С13—Н13   | 120.2841    | C29—C30—C31   | 120.4 (2)   |
| C14—C13—H13   | 120.2831    | С29—С30—Н30   | 119.7998    |
| C13—C14—C15   | 120.3 (2)   | С31—С30—Н30   | 119.7949    |
| C13—C14—H14   | 119.8703    | C26—C31—C30   | 121.2 (2)   |
| C15-C14-H14   | 119.8702    | С26—С31—Н31   | 119.3916    |
| C10-C15-C14   | 121.5 (2)   | С30—С31—Н31   | 119.3905    |
| C10-C15-H15   | 119.2735    | C24—C32—H32a  | 109.4703    |
| C14—C15—H15   | 119.2764    | C24—C32—H32b  | 109.4721    |
| C8—C16—H16a   | 109.4718    | C24—C32—H32c  | 109.4709    |
| C8—C16—H16b   | 109.4708    | H32a—C32—H32b | 109.4716    |
| C8—C16—H16c   | 109.4712    | H32a—C32—H32c | 109.4711    |
| H16a—C16—H16b | 109.4705    | H32b—C32—H32c | 109.4713    |
| H16a—C16—H16c | 109.4723    |               |             |
| ?—?—?         | ?           |               |             |

## Hydrogen-bond geometry (Å, °)

| D—H···A | <i>D</i> —Н | H···A | $D \cdots A$ | D—H··· $A$ |
|---------|-------------|-------|--------------|------------|
| ??…?    | ?           | ?     | ?            | ?          |





Fig. 2

